

Asymmetric Synthesis of syn- and anti-1,3-Amino Alcohols

Takuya Kochi, Tony P. Tang, and Jonathan A. Ellman*

Center for New Directions in Organic Synthesis, Department of Chemistry, University of California, Berkeley, California 94720

Received March 22, 2002

7

The addition of nucleophiles to *N*-sulfinyl imines is used extensively for the asymmetric synthesis of a broad range of aminecontaining compounds.¹ In contrast, despite the importance of metalloenamines as enolate equivalents,² the chemistry of metalloenamines derived from *N*-sulfinyl imines has not previously been reported. Herein we describe the highly diastereoselective addition of a metalated *tert*-butanesulfinyl imine to aldehydes (Figure 1). We further describe the highly diastereoselective reduction of the β -hydroxy-*N*-sulfinyl ketimine products to obtain *N*-sulfinyl derivatives of either *syn-* or *anti-*1,3-amino alcohols, which are present in many molecules of pharmaceutical and biological interest.³ To our knowledge this is the first method to be reported for the stereoselective synthesis of both the *syn-* and *anti-*1,3-amino alcohols from a common synthetic intermediate.⁴

Figure 1. Addition of metalated *N*-sulfinyl imine 1 to aldehydes (M = MgBr or ZnBr).

We first examined the metalation of tert-butanesulfinyl ketimine 1 followed by addition to propionaldehyde (Table 1). Deprotonation of 1 with LDA in THF followed by reaction with propionaldehyde afforded β -hydroxy sulfinyl imine **2a** in 80% yield and with 86:14 dr (entry 1). Changing the solvent to toluene or diethyl ether resulted in lower diastereoselectivities. However, the addition of metal salts resulted in a dramatic increase in diastereoselectivity. Specifically, addition of MgBr₂ and ZnBr₂ afforded 2a with ratios of 96:4 and 93:7, respectively, with the addition of MgBr₂ providing the highest yield (entry 2). Using the optimal conditions, the metalloenamine of 1 was next added to an α -branched aldehyde (entry 4), a β -branched aldehyde (entry 5), and an α, α -dibranched aldehyde (entry 6). The addition reactions proceeded with high diastereoselectivity for each aldehyde substrate (96:4 to 98:2), and diastereomerically pure 2b-d were obtained in high yields after chromatography. Notably, addition of the metalloenamine of 1 to benzaldehyde proceeded with highest stereoselectivity when ZnBr₂ (entry 8) rather than MgBr₂ (entry 7) was added. The sense of induction for the addition to aldehydes was confirmed by X-ray crystallography of product 2e from addition to benzaldehyde and can be predicted by the mnemonic in Figure 1.

abl	e	1		Preparation	of	β -Hydroxy-	N-sulfinyl	Imines 2
-----	---	---	--	-------------	----	-------------------	------------	----------

entry	R	additive	product	dr ^a	yield (%) ^b
1	Et	_	2a	86:14	80
2	Et	MgBr ₂	2a	96:4	84
3	Et	$ZnBr_2$	2a	93:7	62
4	<i>i</i> -Bu	$MgBr_2$	2b	96:4	75
5	<i>i</i> -Pr	$MgBr_2$	2c	98:2	88
6	t-Bu	MgBr ₂	2d	98:2	64
7	Ph	MgBr ₂	2e	76:2	66
8	Ph	ZnBr ₂	2e	92:8	79

 $^{a}\,\mathrm{Diastereomeric}$ ratios. $^{b}\,\mathrm{Isolated}$ yields of diastereomerically pure material.

Hydrolysis of the addition product **2c** with acetic acid in MeOH/H₂O afforded β -hydroxy ketone **3c** in quantitative yield with 1–2% racemization (eq 1). The absolute configuration of **3c** was determined by comparison of the optical rotation to the literature value, confirming that the sense of induction is the same for additions to both aliphatic and aromatic aldehydes. *tert*-Butane-sulfinamide was also isolated in 99% yield and without racemization (>99% ee). Hydrolysis of **2e** similarly proceeded in quantitative yield with <2% racemization.

The reduction of β -hydroxy-*N*-sulfinyl imines **2** was next examined. A number of reducing agents were first screened for the reduction of **2c** (Table 2). The *N*-sulfinyl 1,3-amino alcohol *syn*-**4c** was obtained with the highest selectivity (96:4 *syn/anti*) by reduction with catecholborane at -10 °C, with the diastereomerically pure material isolated in 84% yield after chromatography. Alternatively, reduction of **2c** with LiBHEt₃ at -78 °C provided the *anti* product **4c** in 83% yield. Reduction of **2c** with LiBH(*s*-Bu)₃ provided the same yield and selectivity observed for LiBHEt₃. The generality of the optimal reducing conditions was demonstrated by reducing β -hydroxy *N*-sulfinyl imines **2a**-**e** (Table 3). For all substrates, very high diastereoselectivities and good yields were observed for reductions with both catecholborane and LiBHEt₃.⁵

To understand the origin of the reduction stereoselectivities, the reduction of the C-3 epimer of **2e** was investigated. Reduction with catecholborane provided the *anti*-1,3-amino alcohol product with 86:14 diastereoselectivity, while reduction with LiBHEt₃ provided the *syn*-1,3-amino alcohol with 90:10 diastereoselectivity. Clearly, the selectivity of the reduction is primarily controlled by the stereochemistry of the *N*-sulfinyl group rather than by the stereochemistry of the alcohol.⁶ The opposite diastereoselectivity for the

 $[\]ast$ To whom correspondence should be addressed. E-mail: jellman@uclink.berkeley.edu.

^a Diastereomeric ratios. ^b Isolated yields of diastereomerically pure material.

Table 3. Highly Diastereoselective Reduction of β -Hydroxy-*N*-sulfinyl Imines **2**

	G=O OH T	O ^{-S} NH OH Ph	+ 0 ^S		
	2	syn-4	anti-4		
R	reductant	major isomer	dr ^a	yield (%) ^b	
Et	catecholborane ^c	syn-4a	95:5	94	
	LiBHEt3 ^d	anti-4a	>99:1	69	
i-Bu	catecholborane ^c	syn-4b	96:4	84	
	LiBHEt3 ^d	anti-4b	>99:1	85	
<i>i</i> -Pr	catecholborane ^c	syn-4c	96:4	88	
	LiBHEt ₃ ^d	anti-4c	>99:1	83	
t-Bu	catecholborane ^c	syn-4d	96:4	89	
	LiBHEt3 ^d	anti-4d	>99:1	91	
Ph	catecholborane ^c	syn-4e	96:4	84	
	LiBHEt ₃ ^d	anti-4e	>99:1	73	

^{*a*} Diastereomeric ratios. ^{*b*} Isolated yields of diastereomerically pure material. ^{*c*} Reaction was performed with 5 equiv of catecholborane in THF at -10 °C for 20 h. ^{*d*} Reaction was performed with 2.5 equiv of LiBHEt₃ in THF at -78 °C for 3 h.

reduction with catecholborane versus LiBHEt₃ can be rationalized by considering the geometry of the *N*-sulfinyl imine during the reduction step (Figure 2). The *E*-geometry of β -hydroxy *N*-sulfinyl

Figure 2. Stereoselective reduction of N-sulfinyl imines 2.

imine **2** is based upon the X-ray crystal structure of **2e**. The addition of LiBHEt₃ is unlikely to change the *N*-sulfinyl imine geometry. In contrast, addition of catecholborane may provide the stable six-

membered ring intermediate **6** analogous to the stereoselective reduction of β -hydroxy ketones reported by Evans and Hoveyda.⁷ Isomerization from the *E*- to the *Z*-imine would presumably result in the observed reversal in the stereoselectivity of the catecholborane reduction.

In conclusion, the first application of metalloenamines derived from *N*-sulfinyl imines is reported for the highly diastereoselective addition to aldehydes. The reduction of the resulting β -hydroxy sulfinyl imines **2** with catecholborane and LiBHEt₃ provides *syn*and *anti*-1,3-amino alcohols, respectively, with very high diastereomeric ratios. The addition chemistry of metalloenamines derived from *N*-sulfinyl α -substituted ketimines, aliphatic ketimines, and aldimines is currently under investigation, as is the addition of carbon-based nucleophiles to β -hydroxy imines **2**.

Acknowledgment. We gratefully acknowledge the NSF for financial support. T.P.T. also thanks Pharmacia for a graduate research fellowship. The Center for New Directions in Organic Synthesis is supported by Bristol-Myers Squibb as a Sponsoring Member and Novartis as a Supporting Member. We thank Dr. Fred Hollander and Dr. Allen Oliver of the UC Berkeley CHEXRAY facility for carrying out the X-ray diffraction studies.

Supporting Information Available: Synthetic procedures, characterization, and stereochemical determination of new compounds (PDF). An X-ray crystallographic file in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. Rev. 1998, 27, 13. (b) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913– 9914. (c) Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 12–13. (d) Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268–269. (e) Cogan, D. A.; Liu, G.; Ellman, J. A. Tetrahedron 1999, 55, 8883–8904. (f) Borg, G.; Cogan, D. A.; Ellman, J. A. Tetrahedron Lett. 1999, 40, 6709–6712. (g) Davis, F. A.; McCoull, W. J. Org. Chem. 1999, 64, 3396– 3397. (h) Davis, F. A.; Lee, S.; Zhang, H.; Fanelli, D. L. J. Org. Chem. 2000, 65, 8704–8708. (i) Lee, Y.; Silverman, R. B. Org. Lett. 2001, 42, 1433–1436. (k) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Angew. Chem., Int. Ed. 2001, 40, 589–590. (l) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Org. Lett. 2001, 3, 2847–2850. (m) Lee, A.; Ellman, J. A. Org. Lett. 2001, 3, 3707–3709. (n) Barrow, J. C.; Ngo, P. L.; Pellicore, J. M.; Selnick, H. G.; Nantermet, P. G. Tetrahedron Lett. 2001, 42, 72–8778. (p) Pflum, D. A.; Krishnamurthy, D.; Han, Z.; Wald, S. A.; Senanayake, C. H. Tetrahedron Lett. 2002, 43, 923–926.
- (a) Martin, D. Metalloenamines. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 475– 502. (b) Whitesell, J. K.; Whitesell, M. A. *Synthesis* **1983**, *95*, 517–536.
 (c) Bergbreiter, D. E.; Newcomb, M. Alkylation of Imine and Enamine Salts. In *Asymmetric Synthesis*; Morrison, J. D., Ed.; Academic Press: Orlando, FL, 1984; Vol. 2, pp 243–273.
 (a) Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am. Chem. Soc. **1972**, *94*, 4353–4354. (b) Kozikowski, A. P.; Chen, Y.-Y. J.
- (3) (a) Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am. Chem. Soc. 1972, 94, 4353–4354. (b) Kozikowski, A. P.; Chen, Y.-Y. J. Org. Chem. 1981, 46, 5248–5250. (c) Wang, Y.-F.; Izawa, T.; Kobayashi, S.; Ohno, M. J. Am. Chem. Soc. 1982, 104, 6465–6466. (d) Hashiguchi, S.; Kawada, A.; Natsugari, H. J. Chem. Soc., Perkin Trans. 1 1991, 2435–2444. (e) Knapp, S. Chem. Rev. 1995, 95, 1859–1876. (f) Sakai, R.; Kamiya, H.; Murata, M.; Shimamoto, K. J. Am. Chem. Soc. 1997, 179, 4112–4116. (g) Carlier, P. R.; Lo, M. M.-C.; Lo, P. C.-K.; Richelson, E.; Tatsumi, M.; Reynolds, I. J.; Sharma, T. A. Bioorg. Med. Chem. Lett. 1998, 8, 487–492. (h) Benedetti, F.; Norbedo, S. Chem. Commun. 2001, 203–204.
- (4) Asymmetric synthesis of 1,3-amino alcohols: (a) Yamamoto, Y.; Komatsu, T.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1985, 814–815. (b) Barluenga, J.; Fernandez-Marí, F.; Viado, A. L.; Aguilar, E.; Olano, B. J. Org. Chem. 1996, 61, 5659–5662. (c) Toujas, J.-L.; Toupet, L.; Vaultier, M. Tetrahedron 2000, 56, 2665–2672. See also ref 3.
- (5) The relative configuration of 4 was determined by NMR studies on cyclic carbamates derived from syn- and anti-4c,e and X-ray crystallography of syn-4e. See Supporting Information.
- (6) Reduction of the N-sulfinyl imine derived from acetophenone with LiBHEt₃ proceeds with 96:4 dr and with the same relative stereochemistry as observed for the reductions of 2 with LiBHEt₃. In contrast, reduction with catecholborane proceeds in very poor yield (<10%) and with poor selectivity (<2:1).</p>
- selectivity (<2:1). (7) Evans, D. A.; Hoveyda, A. H. J. Org. Chem. **1990**, 55, 5190–5192.
 - JA026292G